2 research outputs found

    Machine learning-based estimation of buildings' characteristics employing electrical and chilled water consumption data: Pipeline optimization

    Get PDF
    Smart meter-driven remote auditing of buildings, as an alternative to the labor-intensive on-site visits, permits large-scale and rapid identification of buildings with low energy performance. The existing literature has mainly focused on electricity meters' data from a rather small set of buildings and efforts have often not been made to facilitate the models' physical interpretability. Accordingly, the present work focuses on the implementation and optimization of ML-based pipelines for building characterization (by use type (A), performance class (B), and operation group (C)) employing hourly electrical and chilled-water consumption data. Utilizing the Building Data Genome Project II dataset (with data from 1636 buildings), feature generation, feature selection, and pipeline optimization steps are performed for each pipeline. Results demonstrate that performing the latter two steps improves the model's accuracy (5.3%, 2.9%, and 3.9% for pipelines A, B, and C compared to a benchmark model), while notably reduces the number of utilized features (94.7%, 88.3%, 89.4%), enhancing the models' interpretability. Furthermore, adding features extracted from chilled-water consumption data boosts the accuracy (with respect to baseline) for the second subset by 12.4%, 13.5%, and 7.2%, while decreasing the feature count by 97.2%, 96.4%, and 96.5%, respectively.publishedVersio

    Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories

    Get PDF
    The present study is focused on assessing the impact of the performance of baseline load prediction pipelines on the estimation (by the grid operator) accuracy of the flexibility offered by different categories of buildings. Accordingly, the corresponding impact of employing different machine learning (ML) algorithms, with sliding-window and offline training schemes, for hour-ahead baseline load prediction has been investigated and compared. Using a smart meter measurements dataset, training window sizes and the most promising pipeline for each building category are first identified. Next, the consumption profiles of five buildings (belonging to each category), with the regular operation (baseline load) and while offering flexibility, are physically simulated. Finally, the identified pipelines are used for predicting the baseline loads, and the resulting error in estimating the provided flexibility is determined. Obtained results demonstrate that the identified most promising prediction pipeline (extra trees algorithm with a sliding window of 5 weeks) offers a notably superior performance compared to that of offline training (average score of 0.91 vs. 0.87). Employing these pipelines permits estimating the provided flexibility with acceptable accuracy (flexibility index's mean relative error between -2.45% to +2.79%), permitting the grid operator to guarantee fair compensation for buildings' offered flexibility.publishedVersio
    corecore